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Analytic dependences describing the evolution of axisymmetric and planar coflows 
in the asymptotic case of weak turbulence are obtained on the basis of a three- 
parameter differential model. 

At this time considerable experience has been accumulated (see the monograph [i], for 
instance) on computation of turbulent shear flow characteristics on the basis of multipara- 
metric differential (uiu j -- eu) models. The recommended values of the empirical constants 
here refer to domains of strong turbulence governed by large values of the turbulent Reynolds 
number R I. In the majority of free turbulent flows this parameter R 1 diminishes monotoni- 
cally downstream from values R 1 >> 1 in the near domain to R 1 < 1 in the far. In computing 
such flows on the basis of asymptotic models (for R 1 >> i) ever-increasing differences are 
detected between the computation results and experimental data as the turbulent number R 1 
diminishes. It is shown in [2, 3] that to eliminate these differences that occur, the 
empirical constants recommended in [i] should be replaced by functions of the number R I. 
These functions can be considered constants only in the limit cases of R~ § ~ and R 1 § 0, 
however, their asymptotic values as R 1 + 0 require refinement. 

The singularities of degeneration of an inhomogeneous velocity field were first inves- 
tigated in the asymptotic case of weak turbulence by Phillips [4] by applying the Fourier 
transform to the Navier--Stokes equations for the velocity components and the vorticity with 
subsequent decomposition of the Fourier transforms into series and neglecting higher-order 
infinitesimals. It is shown in this paper that a three-parameter differential model q2 
ulu2 -- Su, describing the evolution of the far wake (R 1 § 0), allows of analytical solution. 
The rate of degeneration of the wake characteristics being modeled evidently depends on the 
magnitude of the empirical parameters in the model. Therefore, by comparing the analytic 
solution obtainedwith the known Phillips laws, the magnitude of the empirical parameters 
can be determined as R 1 § 0. Moreover, the analytic solutions can turn out to be useful 
in numerical modeling of the wake characteristics on the basis of a universal model with 
respect to the turbulent Reynolds number. Actually, the emergence of the numerical solution 
into an analytic solution as the number R X diminishes will indicate the correctness of the 
numerical integration method and the absence of errors in the calculation program. 

Using the diameter of a body of revolution or the transverse dimension of a flat body 
d and the free stream velocity U~ as characteristic quantities, we introduce the dimension- 
less parameters 

U U1 - -  U ~  E = u~u~ x~ x2 = x - - - -  . . ,  r - - - - - - ,  

' u1' d a 

gu u~u2 D = U d , R~  U~d 
R = r U ~ '  v 

For  RX < 1 t h e  i n e r t i a l  f o r c e s  become n e g l i g i b l e  compared  w i t h  t h e  v i s c o u s  f o r c e s ;  c o n -  
s e q u e n t l y ,  the closed system of equations (known from [i-3], say) and the condition for con- 
servation of the excess momentum are simplified and take the form 

OU ~- 1 0 ( r n c)U "~ ' I n =  .1 r~Udr= c~ 
Ox r~ R~ Or \ --&--r ] o (1) 
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(3) 

1 O ( t . n O D  ) D ~ 
Or, rn  R =  Or ~ r  -- F. ~E " 

The value n = 0 corresponds to plane flow, and n = i to axisymmetric flow. 

We assume a self-similar nature to the dependence of the characteristics being modeled 
on the coordinates x and r. Following the method elucidated by Gorodtsov [5], it is easy to 
obtain 

X nU u (x, ~) = Uo(x + o) f~ (~), E (x, ~) Eo (x + Xo)~ (~), 

D (x, ~1) ----- Do (x -{- Xo)~Df o 01), R (x, 1]) = I'~ o (X + xo)nRfR (1]), 

~1 = r (x + xo) -~ 5 
The damping exponents and the transverse coordinate functions are determined from the system 
of ordinary differential equations 

|--n 

~1~ ' - - ~ =  (nnfu) ', (4) ~ . n u  . f ~ - - y -  f . = 

~l'nE'fe-- o /~'=: ~11-- 2~lDo --y- - ~  (n" f~ )' eo to, (5) 

n'nD'f~-- T to=  ~ (n" fS)' eo f~ ' 

T~ 2 1--n 
~l'nR. fn-- ~ f'n= ~1 n 2 f'n ~Ic2D~ fo fn q UoEo 

�9 - - E l  (n f~)' + R---f eo f~ ~ f~ f"' (7) 

I~ =: i nn[~ (~1) drl = const, ( 8 )  
0 

where 

n u > n R  + l, n E > n R  + nu+ l, 

Each of the functions should satisfy the evident boundary conditions 

From 

(9) 

(5)' and (6) we obtain 

f'in=o = O, lira f' (~) = lira f (~) = O. 

fe r i D = n E l l ,  hE= ( F ~ - - . 2 ) n + F ~ + 2  (10) 
-fD-- F ~ 2  ' 2 ( 2 - - F ~ )  

In a planar wake with nonzero excess impulse the turbulent Reynolds number is conserved 
invariant downstream and there is no final stage of degeneration. In a planar momentum-free 
medium and in an axisymmetric medium (for any magnitude of the excess momentum lu) the number 
R% diminishes to zero. Let us examine in greater detail the axisymmetric wave as R% + O. 
Here nE = Fu/(2 -- Fu) independently of the quantity lu. The limit value of the function Fu, 
equal to 2.8, is determined in [2] from the invariant relationship of L. G. Loitsyanskii. 
Therefore, nE = --3.5, i.e., agrees with the exponent obtained by Phillips [4]. 

The equation for the function fE takes the form 

(~f~)' + ~ V ~  + 2~qf~ = 0, R~ = 2~. 

The substitution z = q2 converts it into an equation whose general solution is known [6]. 
By satisfying the boundary conditions we obtain 
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E(x, ~)= Eo(x+Xo)-3'50(O), D(x, ~)= 1,25 E'x't ~', 

(D0])=exp( ~0~) " 2  

T h e r e f o r e ,  the  T a y l o r  m i c r o s c a l e  tu  grows a c c o r d i n g  to  the  law ~ +  Xo and remains  c o n s t a n t  
a c r o s s  the  wave i n  the  f i n a l  s t a g e  o f  a x i s y m m e t r i c  wave d e g e n e r a t i o n .  

Under the  c o n d i t i o n  I u = O, t h e r e  f o l l o w s  u n i q u e l y  nu = - - 1  from (4) and ( 8 ) .  The f u n c -  
t i o n  fu  i s  d e s c r i b e d  by (4 ) ,  and,  t h e r e f o r e ,  U(x, q) = Uo(x + X o ) - l ~ ( n ) .  �9 

In  the  c a s e  o f  z e r o  e x c e s s  momentum, the  i n t e g r a l  c o n d i t i o n  (8) does no t  p e r m i t  d e t e r m i n -  
a t i o n  o f  the  exponen t  nu.  As f o l l o w s  from [ 6 ] ,  t he  s o l u t i o n  o f  the  d i f f e r e n t i a l  e q u a t i o n  (4) 
that satisfies the symmetry condition can be represented in the form 

fu=$(ohFl(nu--1 ,  1; a ' ] ~ )  2 ' 
where IFI(a, b; x) = ~ (a)uxk is a degenerate hypergeometric function. It is natural to 

assume that as in the case Iu # 0 the defect in the velocity in a momentum-free wake will 

damp out exponentially as n § ~. This is possible only in the case that the exponent nu is 
an arbitrary negative integer where nu~--2 A definite function fu corresponds to each 
value of the exponent nu, for instance 

~ = - - 2 ,  f u t ( ~ ) ~ ( ~ ) (  1 ~ ) -- -~- n~ , (ll) 

nu=--3 ,  f u 2 ( n ) = W ( N )  l - - ~ ? l ~ + - ~ - n '  �9 (12)  

From relationship (9) there follows i ~ nu -- nR < --4.5. Consequently, to determine 

the possible values of the exponent nu it is necessary to find nR. In the case of a momentum- 
free wake, the component (E/r)~U/3r, modeling the generation of the tangential stresses in (2) 
decreases according to a power law with the exponent n = --4.5 + nu ~ --6.5. We assume that 
the contribution of this component to the balance equation can be neglected. Then, multiply- 
ing (7) term-by-term by 2 and integrating over the transverse coordinate, we have 

2 ) ~ 3 f R ( ~ ) d o  = 0, nR = - - 2 - - 1 , 2 5 c ~ .  (nR + 1,25c~ + 
o 

0 

I t  i s  known t h a t  c2 = 2 + c~,  where c~ e n t e r s  i n  the  exchange  a p p r o x i m a t i o n  and the  f a c -  
t o r  2 i n  the  a p p r o x i m a t i o n  o f  t he  d i s s i p a t i v e  components  i n  the  second-moment  b a l a n c e  e q u a -  
t i o n s .  Each o f  the  p u l s a t i o n  components  d i s s i p a t e s  the  s t o r e d  e n e r g y  w i t h o u t  exchange  w i t h  
t he  o t h e r  components  i n  the  f i n a l  s t a g e  o f  the  d e g e n e r a t i o n .  T h e r e f o r e ,  c~ § 0, c2 § 2, and 
nR = - - 4 . 5 .  In  such a c a s e  the  c o n v e c t i v e  and d i s s i p a t i v e  te rms  of  (2) d e c r e a s e  a c c o r d i n g  
to  a power law w i t h  exponen t  n = - - 5 . 5 ,  and the  c o n t r i b u t i o n  o f  the  g e n e r a t i o n  to  the  b a l a n c e  
e q u a t i o n s  can  a c t u a l l y  be n e g l e c t e d .  

I t  i s  e a s y  to  see  t h a t  f o r  Iu  # 0 a l l  t he  components  o f  (2) a r e  e q u a l l y  r i g h t  and 
d e c r e a s e  a c c o r d i n g  to  the  law (x + Xo) - 5 " s  T h e r e f o r e ,  t he  exponen t  nR = - - 4 . 5  i s  i n d e p e n -  
den t  o f  the  magn i tude  o f  the  e x c e s s  momentum, w h i l e  the  f u n c t i o n  fR i s  d e s c r i b e d  by d i f f e r e n t  
equations for I u = 0 and I u r O. The model system of equations (1)-(3) hence allows power 
laws of rate defect damping with both the factor nu = --2, and with the subscript nu = --3. 
The distribution fu across the wake is described by relationships (ii) and (12), and R(x, 

n) = Ro(x + Xo)-4"5r 

For I u # 0 the function fR satisfies the equation 

(0fR)' + (2 + an~) f~ + 4~n/~ = Anr  ~ (n), A ~ctU~176 
Ro 

whose solution has the form 

n 

fn (n) = r (0) 5- ~ (0) j' [r  (t) - -  (1 + ~t 2) r (t)l t-s dr. 
2~ o 

905 



For a flat momentum-free wake, nE = --3, fD = 1.25 fE follows from (i0). The function 
fE satisfies the equation 

f~ + ~ff~ -4- ~,~E : 0 ,  

that has the solution fE(n) = r Therefore, in the final stage of degeneration of a 
planar momentum-free turbulent wake, the turbulent energy and its dissipation rate satisfy 
the relationships 

E (x, +1) = Eo (x -+- Xo)-30 (~1), D (x, +1) = 1,25 E (x, +1) , 
x -~- x o 

and the Taylor microscale Xu across the wake is kept constant. Multiplying (7) by q2 and 
integrating with respect to the transverse coordinate with the boundary conditions taken 
into account, we obtain 

% 
(nR + 1,25c2 + 1,5) ~ ~ [R  0]) d~ = 0. 

b 

T h e r e f o r e ,  nR = - - 1 . 5  - -  1 . 2 5 c 2  = - - 4 ,  and  (7) i s  c o n v e r t e d  t o  t h e  f o r m  ( n 2 f ' R )  ' + 
a ( ~ 3 f R  ) '  = 0 and a l l o w s  o f  a n a l y t i c  s o l u t i o n  so  t h a t  R(x ,  n) = Ro(x  + x o ) - 4 ~ ( n ) .  

W r i t i n g  t h e  g e n e r a l  s o l u t i o n  o f  (4)  by a n a l o g y  w i t h  t h e  a x i s y m m e t r i c  c a s e  and a s s u m i n g  
an e x p o n e n t i a l  n a t u r e  o f  t h e  d e c r e a s e  i n  t h e  v e l o c i t y  d e f e c t  a s  n + ~ ,  we e a s i l y  o b t a i n  t h a t  
nu = --k -- 1/2, k~0 is an arbitrary integer. But in the final stage of degeneration of a 
plane momentum-free wake the exponent nu should satisfy inequalities (9). In that case the 
model (1)-(3) allows two laws of evolution for the defect of the average velocity 

U (x, ~) = Ulo (~ + Xo) -1,  5 (1 - -  a ~ )  �9 (~), (13)  

U (x, ~) = U2o(X+ Xo) -2 '~  1 - -  2~n 2 + - ~  ~%]r ~(n). (14)  

In conclusion, we note that because of the linearity of the equation for the defect in 
the mean velocity, its solution will generally be a linear combination of the functions (13) 
and (14). Consequently, in both the plane and axisymmetric flows the defect in the mean 
velocity will be described by functions that damp more slowly for sufficiently large values 
of the longitudinal coordinate. 

NOTATION 

ui, velocity fluctuation components; q2 = uiui, doubled kinetic energy of the velocity 
fluctuations; Su = v(~ui/3Xk) 2, turbulence kinetic energy dissipation rate; lu = /Svq2/eu, 
Taylor microscale; R l = qX/v, turbulent Reynolds number; x, n, longitudinal and transverse 
self-similar coordinates; nu, hE, nD, nR, exponents of the damping power laws; fu, fE, fD, 
fR, self-similar profile functions; Fu, ci, ca, empirical coefficients. 
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